If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+6k-16=0
a = 5; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·5·(-16)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{89}}{2*5}=\frac{-6-2\sqrt{89}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{89}}{2*5}=\frac{-6+2\sqrt{89}}{10} $
| 6x2+7x-90=0 | | -2x-10=-3x-6 | | 2(x+5)=(x+40) | | 21-x=6+2x | | 8x-9=6x-11 | | -6x+14=-4x+12 | | -9x+20=-5x+32 | | 5x2-x+1=0 | | 6n+6=3(n+5) | | -5x-8=-4x-9 | | 4/7=16/x | | 7x-51=5 | | 4y^2-800=0 | | 50+x+x/4=180 | | 5x2+6x=0 | | -x+17=22 | | -4x+13=-2x+9 | | x+4=-4x-26 | | -4x+21=-5x+22 | | 8x-40=20-4 | | x=4,3+3,7 | | x=+4,3+3,7 | | 6x=48−10x | | 2+5(x–1)=–(3–5x) | | 2^x2+x+1=8 | | 5f-3=3f+1 | | 7x+11=4+2x | | 6x(x-12)-3=0 | | 0=-3(12-x)6x | | 5-7x=-4(x+1) | | 3x10=4x+5 | | 2k²-24k+80=0 |